Biotechnology and apple breeding in Japan
نویسندگان
چکیده
Apple is a fruit crop of significant economic importance, and breeders world wide continue to develop novel cultivars with improved characteristics. The lengthy juvenile period and the large field space required to grow apple populations have imposed major limitations on breeding. Various molecular biological techniques have been employed to make apple breeding easier. Transgenic technology has facilitated the development of apples with resistance to fungal or bacterial diseases, improved fruit quality, or root stocks with better rooting or dwarfing ability. DNA markers for disease resistance (scab, powdery mildew, fire-blight, Alternaria blotch) and fruit skin color have also been developed, and marker-assisted selection (MAS) has been employed in breeding programs. In the last decade, genomic sequences and chromosome maps of various cultivars have become available, allowing the development of large SNP arrays, enabling efficient QTL mapping and genomic selection (GS). In recent years, new technologies for genetic improvement, such as trans-grafting, virus vectors, and genome-editing, have emerged. Using these techniques, no foreign genes are present in the final product, and some of them show considerable promise for application to apple breeding.
منابع مشابه
Reduced generation time of apple seedlings to within a year by means of a plant virus vector: a new plant-breeding technique with no transmission of genetic modification to the next generation.
Fruit trees have a long juvenile phase. For example, the juvenile phase of apple (Malus × domestica) generally lasts for 5-12 years and is a serious constraint for genetic analysis and for creating new apple cultivars through cross-breeding. If modification of the genes involved in the transition from the juvenile phase to the adult phase can enable apple to complete its life cycle within 1 yea...
متن کاملThe Venturia Apple Pathosystem: Pathogenicity Mechanisms and Plant Defense Responses
Venturia inaequalis is the causal agent of apple scab, a devastating disease of apple. We outline several unique features of this pathogen which are useful for molecular genetics studies intended to understand plant-pathogen interactions. The pathogenicity mechanisms of the pathogen and overview of apple defense responses, monogenic and polygenic resistance, and their utilization in scab resist...
متن کاملMolecular Cloning and Analysis of Two Flowering Related Genes from Apple (Malus × domestica)
Apple (Malus×domestica Borkh.) is the fourth fruit in importance and Iran ranks fifth in apple production in the world. Longevity of juvenility in apple extends breeding cycles and makes its breeding a tough job. To alleviate this barrier via genetic engineering, the genes involved in flowering and floral development of apple and their function must be identified and characterized. Most of thes...
متن کاملBird diversity and abundance in organic and conventional apple orchards in northern Japan
Many studies have investigated the benefits of agri-environmental schemes, such as organic farming, on biodiversity conservation in annual systems, but their effectiveness in perennial systems is less well understood, particularly in bird communities in temperate regions of Asia. This study examined the effects of organic farming practices on species richness and abundance of breeding birds in ...
متن کاملEditorial: Maintenance of Genome Integrity: DNA Damage Sensing, Signaling, Repair, and Replication in Plants
Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy, Department of Plant Molecular Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi, India, 3 Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute, Los Baños, Philippines, 4 Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, Japan...
متن کامل